
Actions:

Actions:

Activities:

No application or OSS component
inventories are maintained

"Wild West" Exploration Ad Hoc
Monitor &
Measure

"Zero to Hero": A Software Supply Chain Management Framework

Control

"Zero" "Hero"

More MatureLess Mature

Inventory

Suppliers

Build & Release

Consumption

Risk
Management

Execution Plan

Remediation

Contribution

Manual effort required to produce
application or OSS component

inventories. Is there a better way?

Introduction of a Software Bill of
Materials (SBOM) through

automated Software Composition
Analysis (SCA) tooling

Establishing	a	formal	process	for
automatically	introducing	new
applications	and	generating

SBOMs	with	purchased	SCA	tooling.

Applications	automatically	onboarded
and	SBOMs	auto-generated	during
build	and	release.	A	report	that	maps
components	to	applications	across	the

enterprise	can	be	generated.

Suppliers aren't really considered in
the OSS selection process; it's all

about feature/function fit.

Realization	that	"not	all	suppliers	are
created	equal."	Begin	effort	to	define
"What	should	we	care	about?"	for
supplier	selection.	OSS	risks	are
revealed	as	part	of	this	exploration.

A	one-time	pass	of	"known	good	and
bad"	OSS	Suppliers	has	occurred;

however,	your	organization	has	not	yet
instituted	a	continuous	flow	of	OSS

supplier	information.	Refresh	of	the	data
requires	manual	intervention.

More	automated	processes	are	being
applied	to	the	supplier	selection	process.
Dev	teams	are	becoming	more	open	and
aligned	to	the	culture	shift	towards	OSS

governance.

OSS	suppliers	are	now	vetted	with	strict
selection	criteria.	Continuous	supplier

information	for	OSS	components	is	readily
available,	and	new	releases/upgrades	are
more	frequent.	More	visibility	into	when	an

OSS	project	is	starting	to	decline.

Builds	are	kicked	off	manually	(no
CI/CD	pipeline);	often	push	to	production
without	analysis;	no	formal	QA	gate;	no

traceability	in	code	changes

Start	identifying	"bottlenecks"	in	current
build/release	processes;	begin	exploring

how	to	build	a	CI/CD	pipeline;	
consider	introducing	a	Repository

Manager	to	streamline	download	of	OSS
dependencies	into	builds	and	manage

build	assets

Begin	moving	CI/CD	process	to
dedicated	computing	resources	to

improve	repeatable	results;	integrate
Repository	Manager	into	build	processes

to	pull	in	"trusted"	components	from
proxied	registries.

CI/CD	process	can	now	repeatedly
produce	expected	results	and	handle

different	scenarios	for	testing,	deploying,
and	reporting	of	the	build	and	release	of
software.	Considerations	being	made	for
QA	and	OSS	analysis	"gates"	within	the

CI/CD	pipeline.

You	can	now	report	on	your	build	&
release	process	to	feed	into	optimization
efforts.	Define	and	refine	delivery	KPIs;
evolve	automation	to	continuously

address	risk.

Developers	are	thinking	about
“features	first”	and	functionality	for
OSS	component	selection,	not	risks	of
any	kind;	inadvertently	pulling	in	many
transitive	dependencies	(unaware	of	the

extent	of	them).

Beginning	awareness	that	not	all
components	are	created	equal;
upgrading	is	still	based	on

feature/function	fit,	but	not	necessarily	to
reduce	risk,	stay	up-to-date,	or	reduce

tech	debt.

Partial	adoption	of	Repository	Manager
for	consuming	OSS;	behavior	is
inconsistent	(cultural	change	not

solidified);	introduction	of	Firewall	to
block	"bad"	components	from

entering	the	Repository	Manager.

Normalizing	behavior	and	establishing
processes	around	consuming	OSS

components;	Repository	Manager	is	now
the	accepted	"warehouse"	for	component

selection.

Proactively	selecting	"trusted"
components;	blocking	risky	OSS

components;	continuous	monitoring	for
new	risk;	process	and	requirements	for

upgrading	components	exist

Unaware	of	contributions	to	open	source
that	are	being	made,	unaware	of

modifications	to	OSS	components.	No
guidelines	around	the	use	of	open

source.

Begin	understanding	the	scope	and
scale	of	the	risk.	Begin	exploring	SCA

tools	that	provide	the	insight	on	licensing
risk	and	legal	obligations.	

Risk	thresholds	are	in	place.		Automated
detection	exist	when	modifications	are

made	to	relevant	open	source.
Processes	exist	to	ensure	open	source
obligations	are	met	for	modifications.

Your	organization	becomes	aware	that
OSS	creates	a	legal	obligation	if

modified.

A	clear	policy	and	culture	dedicated	to
contributing	back	to	open	source	exists.

Budget	is	planned	and	in	place	to
encourage	and	support	OSS

development.

No	awareness	of	whether	OSS
components	being	used	in	applications

contain	vulnerabilities.

Realization	that	open	source	has	risk
and	needs	to	be	mitigated;	typically
comes	through	Security	or	Legal

department.

Initial	attempt	at	addressing	OSS	risk;
may	be	disparate	teams	trying	multiple
free	OSS	scanning	tools;	PoCs	are
conducted	for	competitive	analysis	of

paid	SCA	tooling.

Refinement	of	out-of-the-box	policies
around	OSS	security,	licensing,	&

architectural	risks	occurs
by	determining	level	of	risk	acceptance;
socializing	adoption	of	policies	kicks	into

high	gear.

Risk	management	processes	are
automatically	applied	to	OSS	analysis;

developers	can	view	policies	and
suggested	remediation	steps	in	context
within	their	development	environments.

No	awareness	that	a	change	is	needed
to	address	OSS	risk.

While	individuals	or	a	designated	team
are	exploring	options	to	address	software
supply	chain	management	of	OSS,	no

plan	yet	exists.

Initial	plans	around	tooling	and	process
changes	are	being	developed;	a

champion	is	likely	assigned;	a	PoC	team
is	experimenting;	desired	business

outcomes	(ROIs)	are	being	discussed;
a	Success	Plan	is	created.

Process/tooling	changes	are	more
formally	documented;	socialization

through	training	&	documentation	is	in	full
swing;	teams	are	slowly	adapting	how
they	work	to	incorporate	OSS	analysis
into	their	workflows;	Success	Plans	are

being	followed.

Process	and	tooling	changes	are	broadly
adopted/institutionalized;	desired

business	outcomes	(ROI)	have	been
partially	(if	not	fully)	realized;	continuous
improvement/refinement	is	built	in	to	the

process.

Remediation	isn’t	in	my	vocabulary.	I
don’t	remediate;	I	upgrade	when	I	think
about	it,	or	need	a	new	feature.	Technical

debt	isn’t	a	factor.

Just	being	made	aware	of	the	problem.
How	do	I	know	what	to	fix	or	that	it
needs	to	be	fixed?	What	should	I	be

looking	into?	I	don’t	even	know	where	to
look.

I	need	to	fix	something,	but	no
institutionalized	priority,	process,	or

tooling	for	how	to	remediate	yet	exists.
I	fix	it	when	I	have	some	time.

I’m	notified	of	issues	as	soon	as	I	commit
or	build,	thanks	to	SCA	tooling
integration.	Priorities	(from	Risk

Management)	are	generally	set	and	I
know	where	to	start	remediating.	

Risk	is	addressed	proactively	&
continuously.	It	is	inherent	in	the	culture.
Introduction	of	Auditor	for	continuous
monitoring	of	risk	in	production	apps.


